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Abstract. We extend our recent study (Robniket al 1997J. Phys. A: Math. Gen.30 L803) of
diffusion in strongly chaotic systems (‘the random model’) to systems composed of several weakly
coupled ergodic components. By this we mean that the system as a whole is ergodic, but the
typical time for the transition from one to another component is very long, much longer than the
ergodic time inside each individual component. Thus for short times the system behaves like a
single component ergodic system and the random model applies (neglecting the coupling to other
components). At times much longer than the transition time the system behaves like an ergodic
system without internal structure (without decomposition into several components) and the random
model applies again (with different parameters). At intermediate times there is the crossover regime
which we describe in detail analytically for a two-component system and test it numerically in a
double billiard system (butterfly billiard).

1. Introduction

In a recent work (Robniket al 1997) we have demonstrated some general scaling laws in the
behaviour of stochastic diffusion in strongly chaotic systems (ergodic, mixing andK with
a large Lyapunov coefficient, i.e. large KS entropy), mainly in Hamiltonian systems, or in
the strange attractors of dissipative systems. The so-calledrandom modelthat we developed
describes very well the diffusion on chaotic components, in the sense that the relative (invariant)
measureρ(j) as a function of the discrete time∗ j approaches unity exponentially as

ρ(j) = 1− exp(−j/N) (1)

whereN is the number of cells of equal size (relative invariant measure)q = 1/N into which
the whole ergodic component is decomposed, providedN is sufficiently large, sayN > 100
or so. Thisrandom modelrests upon the assumption that there are absolutely no correlations,
not even between two consecutive steps, so that at each step (of filling theN cells) we have
the samea priori probability q = 1/N of visiting any of the cells, irrespective of whether

‖ E-mail address:robnik@uni-mb.si
¶ E-mail address:prosen@fiz.uni-lj.si
+ E-mail address:jure.dobnikar@ijs.si∗ We work either with mappings or with Poincaré mappings on the surface of section. In each casej is the number of
iterations of the map. Here,ρ(j) = ρ2(j)/ρ2(j = ∞), whereρ2(j) is the actual Lebesgue measure of the occupied
territory (cells) of the chaotic component labelled by index 2.
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they are already occupied or not. Such absence of correlations can be implied and expected in
particular by the large Lyapunov exponents, which in turn imply strong stretching and folding
(of a phase space element) even after one iteration, meaning that such a phase element will
be evenly distributed (in the coarse grained sense) over the entire phase space (or surface of
the section). At first sight such a situation seems to be very exceptional, but in fact, we quote
below a number of real dynamical systems which we have checked to obey the model, even
though their Lyapunov exponents are not very large, or even when they are zero.

The process of filling the discretized phase space is obviously a Poissonian process
(no correlations) and can be described in terms of a Bernoulli chain, because the transition
probabilities of the Markov chain are independent of the initial state and are just equal to
q = 1/N (Gaspard and Wang 1993). Therefore, the process will be completely specified by
calculating the probability, denotedPj (k), that at timej there are preciselyk cells occupied
(i.e. exactly(N−k) cells empty). This problem was solved exactly in (Robniket al1997), and
thus the average measure of the occupied domain on the grid of cells is〈kq〉 = ρ(j), which
in the case of sufficiently largeN reduces to the exponential law (1). The universal scaling
property is reflected in the fact thatρ(j) is only a function of the ratio(j/N), and does not
depend onj andN separately.

Such an assumption of absence of all correlations appears to be strong at first sight, and
therefore it is quite surprising that the model describes many deterministic dynamical systems
for which we can expect large Lyapunov coefficients, namely a 2D billiard (Robnik 1983,
λ = 0.375), 3D billiard (Prosen 1997a, b, in his notationa = − 1

5, b = − 12
5 ), ergodic logistic

map (tent map), hydrogen atom in a strong magnetic field (ε = −0.05) (Robnik 1981, 1982,
Hasegawaet al 1989), and standard map (see e.g. Ott 1993, Chirikov 1979) at (K = 400),
in which the agreement is almost perfect, except for the last two systems where we see some
long-time deviations on very small scales. However, in the standard map atK = 3, and in
Hénon–Heiles (1964) system atE = 1

6 the deviations are noticeable though not very big (about
only 1%).

It is also quite astonishing that the random model applies very well even toergodic-only
systems, with strictly zero Lyapunov exponents, namely in case of the triangle billiards (Artuso
et al 1997), where the deviations from the exponential law (1) on the largest scale are within
only a few per cent. It is a well known result (Sinai 1976) that polygonal billiards have exactly
zero Lypunov exponents, easy to understand since all periodic orbits are marginally stable
(parabolic), and since they are dense everywhere, we conclude that the Lyapunov exponents
must be zero everywhere.

The random model developed in Robniket al (1997) is a statistical model, andPj (k)
is used to predict not only the average relative measure of occupied cellsρ(j) = 〈kq〉, the
average taken overk, resulting in (1), but also the standard deviationσ(j), under which the
same assumption of sufficiently largeN is equal to, to the leading order,

σ(j) =
√
〈(kq)2〉 − 〈(kq)〉2 =

√
1− ρ(j)
N

(2)

and gives us an estimate of the size of expected statistical fluctuations inρ(j).
The random model (Robniket al1997) has been subsequently generalized in an important

direction (Prosen and Robnik 1998), namely to describe the diffusion on chaotic components
in systems of mixed dynamics, with divided phase space, having regular regions (invariant
tori) coexisting in the phase space with chaotic regions, a typical KAM scenario (Kolmogorov
1954, Arnold 1963, Moser 1962, Benettinet al 1984, Gutzwiller 1990). Such systems in two
degrees of freedom can have the fractal boundary between the regular and irregular component
and thus the convergence to the theoretically expected results can be very slow, mimicking a
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departure from the random model, although ultimately it conforms to this model. In three or
more degrees of freedom there is no boundary between the regular and chaotic regions, because
we have the Arnold web (Chirikov 1979), which is dense everywhere in the phase space, and
thus a naive box-counting would always imply that the relative invariant measure of the chaotic
component is equal to the measure of the entire phase space, soρ2(j) = 1, which is wrong,
because the KAM theorem rigorously gives that the relative measure of the regular component
ρ1 is strictly positive,ρ1 > 1, moreover it is close to unity with the perturbation parameter.
We assume that the invariant measure of the chaotic component is positive, although strictly
speaking this is a major open theoretical problem in the mathematics of nonlinear systems, the
so-called coexistence problem (Strelcyn 1991). Therefore, in such case one must introduce the
possibility of differenta priori probabilities, which are now no longer just the same and equal to
q = 1/N , but have a certain distribution described by the so-called greyness distributionw(g),
whereg is a continuous variable on the interval [0, 1]: g = 0 means no visits (white cells),
g = 1 are the most frequently occupied cells (black cells), and those cells with 0< g < 1
have intermediate number of visits (grey cells). With this model (Prosen and Robnik 1998) we
have shown how by measuring (numerically calculating)w(g) we can determine the relative
invariant measureω of the chaotic component. The result is

ω =
∫ 1

0
gw(g) dg (3)

and the time dependent relative measure of the occupied domain is equal to

ρ(j) = 1−
∫ 1

0
dg w(g)exp

(
− gj
ωN

)
(4)

and the standard deviation is still given precisely by the equation (2). The greyness distribution
can be numerically calculated quite easily by noticing that the greynessg is proportional to
the average occupancy numbern(g), namelyn(g) = g/ω, so by measuringn(g) in the limit
j →∞ and after normalizing theg of the peak ofn(g) to unity, we get theg’s, and then by
binning them into bins of suitably small size1g we get the histogram forw(g).

In the case of ergodicity (only one chaotic component) we havew(g) = δ(g − 1), the
Dirac delta function atg = 1, and then from equations (3) and (4) follows the random model,
with exponential behaviour (1).

In this work we deal withergodicsystems, but each having several components, each of
them also ergodic, but weakly coupled, by which we mean that the transition probability for
going from one to another component is very small and the typical transition time (= mean
first passage time)j ∗ is very long. Obviously, at small times we shall find the random model
(1) withN being equal to the number of cells of the starting component,N = N1, whilst for
very large timesj , bigger than the typical transition timej ∗, soj � j ∗, we shall find again
the random model (1), but now withN being equal to the number of all cells in the system,
N = Ns . In between, whenj ≈ j∗, we have the crossover regime which we analyse in this
work. Examples for applications of the multi-component model in physics are all situations
where we have weakly coupled ergodic Hamiltonian oscillators. One special case is ergodic
2-dim billiards coupled/connected by small holes or channels.

This paper is organized as follows. In section 2 we describe the analytical derivation
of the two-component model, in section 3 we show the numerical results on the so-called
butterfly billiard (double cardioid billiard atλ = 0.5, Robnik 1983), in section 4 we describe
the generalization to many components, and in section 5 we make some general conclusions
and discuss the results in a broader perspective.
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2. The two-component random model

We consider a two-component ergodic system, composed of the left and right component,
denoted byL andR respectively, or also by indices 1 and 2, respectively. The system is
characterized by the numberN1 of cells of equal relative invariant measureq = 1/N in the left
component, andN2 cells of equal sizeq = 1/N in the right component, whereN = N1 +N2.
(In the random one-component modelN2 = 0, anda = q = 1/N1 = 1/N .) By definition the
probability for a ball inL to fall again inL is justaN1, and similarly, the probability of a ball
in R to fall again inR is equal tocN2. Now the cross-transitions are allowed, and byb12 we
denote the transition probability (for transition 1→ 2, i.e.L → R) per cell inR of falling
into one of itsN2 cells, and converselyb21 is the probability per cell inL to fall into one ofN1

cells inL.
In fact, considering the precise details of our model, we deal here with a Markov model,

where theN × N transition matrix has a block structure: theN1 × N1 diagonal block has
all elements equal toa, theN2 × N2 diagonal block has all elements equal toc, whilst the
off-diagonal blocks have elements equal tob12 andb21, respectively. (See e.g., Gaspard and
Wang 1993, Durrett 1996, Feller 1968, Gnedenko 1997.) In this section we work out the
two-component model in detail, first, because here we can solve the most general case, and
secondly, we can show the way how to proceed in the multi-component model with more than
two components, although the explicit closed form results cannot be generally obtained there.

From these definitions it follows, by the conservation of probabilities,

aN1 + b12N2 = 1

cN2 + b21N1 = 1

N1 +N2 = N
(5)

where, as mentioned above,N is now defined as the total number of cells. Now byl̃j andr̃j we
denote the probabilities for the current ball (at thej th step) to fall into anL orR component,
respectively. Of course, at every step/timej , we must have the probability normalization

l̃j + r̃j = 1. (6)

From the above definitions of (transition) probabilities (for transitionsLL, LR, RL andRR)
we have

l̃j+1 = l̃j aN1 + r̃j b21N1

r̃j+1 = l̃j b12N2 + r̃j cN2.
(7)

Obviously, (6) is always satisfied simply due to (5). Now, if the cells are of equal relative
measureq = 1/N and so have equala priori probabilities, then on the average and in the limit
j → ∞ we must have the same relative occupancy which implies the existence of and the
approach to the equilibrium situation. Therefore,

l̃∞ = N1

N
r̃∞ = N2

N
. (8)

By settingj = ∞ in (7) we obtain

l̃∞ = r̃∞ b21N1

b12N2
. (9)

Because, due to (6),l̃∞ + r̃∞ = 1, it follows

l̃∞ = b21N1

b21N1 + b12N2

r̃∞ = b12N2

b12N2 + b21N1
.

(10)
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This result, however, is compatible with equation (9) only if

b12 = b21 (11)

which should be considered as the detailed balance equivalent to the hypothesis of the existence
of the equilibrium (8) in the limitj →∞. Henceforth we shall denote the transition probability
(per cell) just byb = b12 = b21.

After this preliminary analysis we can write down the probability evolution (recursion)
relations (7) simply as(

l̃j+1

r̃j+1

)
= M

(
l̃j
r̃j

)
(12)

whereM is the simple 2× 2 matrix

M =
(
aN1 bN1

bN2 cN2

)
. (13)

Due to the linearity of the above recursion relations we can write down the explicit solution as
follows: (

l̃j
r̃j

)
= Mj

(
l̃0
r̃0

)
(14)

where(l̃0, r̃0) is the initial condition (initial state). After diagonalizing the matrixM by a
similarity transformation with matrixO, so that

M = O−1

(
λ1 0
0 λ2

)
O (15)

we have simply

Mj = OT

(
λ
j

1 0
0 λ

j

2

)
O. (16)

Thus we need the eigenvaluesλ1 andλ2 of M, equation (13) which (after a short calculation)
are

λ1 = 1 λ2 = 1− bN. (17)

Therefore,

Mj = OT

(
1 0
0 (1− bN)j

)
O. (18)

Now as for the initial conditions we must start in one of the two components, and let us assume
without loss of generality, of course, thatl̃0 = 1 andr̃0 = 0, i.e. we start in the left component
L, i.e. in 1. Then, due to the linearity of the evolution equations, without explicitly knowing
the matrixO we have(

l̃j
r̃j

)
=
(
a11 + (1− bN)ja12

a21 + (1− bN)ja22

)
. (19)

The final condition (8) immediately implies

a11 = l̃∞ = N1

N
a21 = r̃∞ = N2

N
(20)

and the initial condition(l̃0, r̃0) = (1, 0) implies

a12 = N2

N
a22 = −N2

N
. (21)
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Thus we arrive at the explicit solution in closed form

l̃j = N1

N
+
N2

N
(1− bN)j

r̃j = N2

N
− N2

N
(1− bN)j

(22)

for the probabilities of being inL or in R at thej th step, which simply follows from the
previous three equations (19)–(21)

We now have to define the probabilityPj (l, r) of having preciselyl cells occupied inL
and preciselyr cells inR at thej th step. Of course, multiple occupancy is allowed, so that
preciselyN1− l andN2− r cells are empty inL andR, respectively. This probability satisfies
the following quite obvious recursion relation:

Pj+1(l, r) = Pj (l, r)[ l̃j {al + br} + r̃{cr + bl}] + Pj (l, r − 1)[bl̃j + cr̃j ](N2 − r + 1)

+Pj (l − 1, r)[al̃j + br̃](N1− l + 1). (23)

Let us define the two quantities

Aj = al̃j + br̃j Cj = bl̃j + cr̃j (24)

which are the probabilities to jump into theL andR component, respectively, at the (j+1)-step.
With this interpretation in mind, the equation (23) is indeed quite obvious and can be rewritten
in compact form

Pj+1(l, r) = Pj (l, r)[lAj + rCj ] + Pj (l, r − 1)(N2 − r + 1)Cj
+Pj (l − 1, r)(N1− l + 1)Aj . (25)

The probabilityPj (k) is defined as the probability of having occupied preciselyk cells in the
whole system, i.e. inL andR together. Obviously, we have

Pj (k) =
∑
l+r=k

Pj (l, r). (26)

The main quantity we seek is the average (expected) measure of occupied cells at stepj ,
denoted byρj , and by assuming the same relative invariant measure equal toq = 1/N for all
of them, inL and inR, we find

ρj =
N∑
k=1

k

N
Pj (k) =

∑
l,r

l + r

N
Pj (l, r). (27)

This can be split into theL-component contributionρLj andR-component contributionρRj ,
namely

ρLj =
∑
l,r

l

N
Pj (l, r) ρRj =

∑
l,r

r

N
Pj (l, r) (28)

and of course

ρj = ρLj + ρRj . (29)

The solution forρLj andρRj can be found by the following trick: multiply the equation (25) by
l/N on both sides and sum up over alll andr. Do the same, symmetrically, forρRJ . After a
straightforward calculation we obtain the exact linear recursion relations

ρLj+1 = (1− q − βLλj )ρLj + qN1(q + βLλj )
ρRj+1 = (1− q − βRλj )ρRj + qN2(q + βRλj )

(30)
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where

q = 1

N
λ = 1− bN βL = qN2(a − b) βR = qN2(b − c). (31)

In order to solve equations (30) we observe that for theL-equationN1/N is the particular
solution, andN2/N for theR-equation. Thus, we can write the solution in the form, here for
theL-part,

ρLj = qN1 + hLj (32)

whence

hLj+1 = (1− q − βLλj )hLj . (33)

This equation, unfortunately, cannot be solved exactly in closed form, but only formally as
a j -fold product. Therefore, we make the approximation of treating the discrete timej as
a continuous variable. In doing this we arrive, after a straightforward calculation, at the
expression

hLj = hL0 exp

[
−
(
qj + qN2(a − b)(1− bN)

j − 1

ln(1− bN)
)]

(34)

and by considering the initial conditionρL0 = qN1 + hL0 = 0, we havehL0 = −qN1, which
yields the final result for theL-equation, and also in complete analogy to theR-equation,
namely

ρLj =
N1

N

(
1− exp

[
− j
N
− N2(a − b)
N ln(1− bN)((1− bN)

j − 1)

])
ρRj =

N2

N

(
1− exp

[
− j
N
− N2(b − c)
N ln(1− bN)((1− bN)

j − 1)

])
.

(35)

Let us assume that the coupling betweenL andR is very small, assumingbN � 1, or
equivalentlyj ∗ = 1/(bN) � 1. Then we make the aproximations ln(1− bN) ≈ −bN , and
(1− bN)j − 1≈ −jbN , and in the limitj � j∗ find

ρLj =
N1

N
(1− e−aj )

ρRj =
N2

N
(1− e−bj ).

(36)

Thus inL (where we start) the filling of cells behaves precisely as in the random model in
the limit b = 0, whilst the filling inR is much slower, namely with coefficientb instead ofa,
where by assumptionb � a.

Let us return to the ‘exact’ expressions (35), which are ‘exact’ in the sense that there
is no other approximation than merelyj � 1, justifying the treatment of the evolution or
recursion equations as the differential rather than the difference equations. See the transition
from equation (33) to (34). This condition is certainly very well satisfied for allj at which we
study a variety of dynamics systems, withj as big as from 102 to 109 or so. These equations
are the solution of the problem, when dealing with one initial condition, starting, say, inL.
(Unfortunately, we cannot easily calculate the expected fluctuations ofρj = ρLj + ρRj , so this
is one of the open problems for the future.)

In numerical calculations with specific dynamical systems we can perform the calculation
of ρj for many different initial conditions, somehow evenly (possibly randomly) distributed
over the phase space. For the two-component random model this means that we take the
average over initial conditions inL andR. Their number must be proportional toN1 andN2,
respectively. So, their statistical weight must be justN1/N andN2/N , respectively. The exact
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results (35) are calculated by assuming a start inL, therefore we shall denote them now by
ρLLj andρRLj . In analogy and symmetrically we can then calculate the corresponding exact
results by assuming a start inR. The results are

ρLLj =
N1

N

(
1− exp

[
− j
N
− N2(a − b)

N ln λ
(λj − 1)

])
ρRLj =

N2

N

(
1− exp

[
− j
N
− N2(b − c)

N ln λ
(λj − 1)

])
ρLRj =

N1

N

(
1− exp

[
− j
N
− N1(b − a)

N ln λ
(λj − 1)

])
ρRRj =

N2

N

(
1− exp

[
− j
N
− N1(c − b)

N ln λ
(λj − 1)

])
.

(37)

Thus, after performing the averaging of the results over the initial conditions in proportion
with the invariant measures ofL andR, as explained above, we define

ρ̄j = N1

N
(ρLLj + ρRLj ) +

N2

N
(ρLRj + ρRRj ) (38)

and calculate

ρ̄j = 1− e−j/N
{
N2

1

N2
exp

[
−N2(a − b)

N ln λ
(λj − 1)

]
+
N1N2

N2
exp

[
−N2(b − c)

N ln λ
(λj − 1)

]
+
N1N2

N2
exp

[
−N1(b − a)

N ln λ
(λj − 1)

]
+
N2

2

N2
exp

[
−N1(c − b)

N ln λ
(λj − 1)

]}
.

(39)

A special interesting model is the symmetric model consisting of two identical components,
so thata = c andN1 = N2 = N/2. The above exact result (39) assumes the simple form

ρ̄j = 1− e−j/N cosh

(
a − b
2 lnλ

(λj − 1)

)
. (40)

Again, the only approximating condition for the validity of this result isj � 1. Now we
assumej ∗ = 1/(bN)� 1, which means that the typical transition time forL→ R transition
is very long (bN very small), so that according to equation (5)a = c ≈ 2/N . Then the result
(40) reduces to the simple form

1− ρ̄j = cosh

(
j∗

N
(1− e−j/j

∗
)

)
e−j/N . (41)

Please observe thatρ̄j is a function only of two scaled times, namelyj/N andj ∗/N , and does
not depend onN separately. Let us examine the behaviour of such a system. There are two
cases. First whenj ∗ � N (A) and the second one whenj∗ � N (B).

The case (A):j ∗ � N . If j < N we get

1− ρ̄j ≈ 1− j/N ≈ e−j/N (42)

which is similar to the random model.
If N < j < j ∗ we have

1− ρ̄j ≈ 1
2 (43)

i.e. locally almost constant value.
If j ∗ < j then we have

1− ρ̄j ≈ 1
2e−

(j−j∗)
N (44)

which means exponential behaviour as in the random model but with the shifted argument
(a prefactor which is not unity).
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Figure 1. The three regimes of case (A) and of case (B) are qualitatively illustrated. Here, in case
(B) we plot the symmetric theoretical distribution (41) withj∗/N = 8.

The case (B):j ∗ � N . In this case (41) reduces to the simple exponential law of the random
model, namely

1− ρ̄j ≈ e−j/N . (45)

The three regimes of case (A) and of case (B) are qualitatively illustrated in figure 1.

3. Numerical results on the butterfly billiard

In this section we report on our numerical calculations for the billiard system which consists
of two identical ergodic components, in order to test and analyse the (conditions of validity)
theory expounded in section 2. We have chosen the quadratic conformal billiard (Robnik
1983), usually called the‘Robnik billiard’ in the literature, defined by the complex conformal
mapw(z) = z+λz2 from the unit disc in thez-plane onto the physicalw-plane. The properties
and the wide applications have been recently described in Robniket al (1997) and will not
be listed here again. We simply mention that the cardioid billiard is obtained for the shape
parameterλ = 0.5. It is known rigorously to be ergodic (Markarian 1993).

Now we design the billiard shape composed of two such billiards, joined with a small
opening, created by the overlap of the boundaries, of sizeε. The geometry is sketched in
figure 2. We shall call such a double billiard thebutterfly billiard whose geometry is fully
specified with two parameters,λ andε.

Due to the ergodicity the escape probability is just equal to the ratio const.ε/L, whereL
is the perimeter of the half-billiard, i.e. the perimeter of the Robnik billiard. Thus by this the
system is fully specified for the study of diffusion on the surface of section.

In figures 3(a)–(c) we show the results for̄ρj versusj/N for three different values of
N , for λ = 0.5 and ε = 0.000 05. For smallj/N we see quite good agreement with
the theoretical prediction (figure 3(a)), at intermediatej/N the deviations become more
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Figure 2. We show the geometry of the butterfly billiard withλ = 0.5 andε = 0.03.

pronounced (figure 3(b)), and for largej/N in (figure 3(c)) the deviations are very significant.
They can be clearly understood by the departures from the two-component random model:
when in one of the components, say inL, the probability to jump into a cell inR is, in our
dynamical system, certainly not the same for all cells inR, but the cells closer to the small
opening have greater chances to be visited. Nevertheless, qualitatively we see the agreement
with theory. We believe that this is certainly a good starting point for even more general
theories of diffusion, statistics of classical motion and transport in conservative dynamical
systems (MacKayet al 1984), especially in the framework of the extensive work by Garspard
and Wang (1993).

4. The multi-component random model

In this section we sketch the general multi-component model, which, however, cannot be
worked out explicitly in closed form results, as we shall see.

We assume we haveM ergodic components, with indexµ, 1 6 µ 6 M, and each
of them havingNµ cells of equal (relative invariant) measure equal toq = 1/N , where
N = N1 + · · ·+NM is the total number of cells. Bybµν we denote the probability for transition
from componentµ to componentν, per cell inν-component, so the probability to jump from
theµ-component to theν-component is, by definition, equal tobµνNν . The diagonal elements
of the matrixbµν will be occasionally denoted byaµ = bµµ.

We again therefore have a Markov model, withN cells on the fine-grained scale, with
N×N transition matrix, which has the block structure: each diagonal blockµ, of sizeNµ×Nµ,
has all elements equal toaµ = bµµ, whilst the off-diagonal blocks have equal elementsbµν ,
in exact correspondence and generalization of the two-component model of section 2.

Now, by a vectorp̃µ we denote the probabilities of residing in theµ-component. Therefore,
by the normalization of total probability

M∑
µ=1

p̃µ = 1. (46)

By p̃0
µ we shall denote the initial state, and byp̃jµ thej th state, i.e. the state at timej , where

j = 1, 2, 3, . . . . Therefore, we can write the evolution equation as

p̃j+1
ν =

M∑
µ=1

bνµNνp̃
j
µ j = 0, 1, 2, . . . . (47)
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Figure 3. We show the results for the butterfly billiard of figure 2 but withε = 0.000 05, for three
different values ofN = N2

1 = 40 000, 160 000, 640 000. In (a) we havej/N 6 1.5, in (b) the
intermediate timescales 06 j/N 6 4 and in (c) for long timescales 06 j/N 6 10. In (a) and
(b) the agreement with theory is satisfactory, whilst in (c) we see large and significant departures.
See text for details.
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Thus we have the finite-dimensional Markov chains (Feller 1968), which describe the coarse-
grained structure (transitions between the components/blocks), with the transition matrix
T = Tµν = bνµNν . If the probability should be conserved for anyp̃µ, equation (46), then the
rows of the matrixT must necessarily add to unity,

M∑
ν=1

Tµν =
M∑
ν=1

bνµNν = 1. (48)

Another property, which must be obeyed, because our model is a physical model and not a
general abstract Markov process, is the existence of a unique stationary state† (equilibrium
state), which is the microcanonical equilibrium, where the probabilitiesp̃∞µ are just equal to
the relative (normalized) invariant ergodic measure of eachµ-component, namely

p̃∞µ = Nµ/N µ = 1, 2, . . . ,M. (49)

Assuming the existence of such an equilibrium also implies (Feller 1968, Durrett 1996) its
uniqueness and also that any initial statep̃0

µ should asymptotically approach the equilibrium
(stationary) state. Inserting (49) in equation (47) we conclude that also the columns ofbµνNµ
must add to unity,

M∑
µ=1

TµνNµN
−1
ν =

M∑
µ=1

bνµNµ = 1. (50)

We therefore have 2M linear equations that must be satisfied byT. This is not enough, in
general, to conclude thatbνµ is a real symmetric matrix. We need in generalM(M − 1)/2
equations. Thus, only in two-component model,M = 2, of section 2, we can conclude that
necessarilyb12 = b21. To the best of our knowledge we cannot, in general, further reduce the
properties ofbνµ (Gaspard and Wang 1993), and therefore the general case is described by an
asymmetric matrixbνµ.

We would like to comment on this important observation. Gaspard and Wang (1993) give
the example of a baker-type map, which is a strongly chaotic system, in fact a Bernoulli
dynamical system, where the transition matrixT is asymmetric, whilebνµ (= transition
probability per unit invariant measure of then-component) issymmetric. Nevertheless, even
the asymmetry ofbνµ is the typical case. One general argument is the following, when we again
go to the fine-grained level of discretization (cells): as we make the cells smaller and smaller
by increasingN (so that their size (invariant measure)q = 1/N is smaller and smaller), the
transition matrix will in general remain irreducible, just due to the ergodicity of the underlying
dynamical system, with the unique (microcanonical) equilibrium state, and will describe the
microscopic dynamics (the pointwise description of the orbits) better and better. (After all, in
computers we work always with some, although very fine, discretization of the phase space!)
Such a mapping and its corresponding Markov chain will of course generally map a statex

to the statex′ in the phase space, but generally notdirectly x′ into x, althoughx′ andx of
course do communicate due to the ergodicity (irreducibility), but not necessarily directly (in
one direct transition). Of course, if this observation is correct on the fine-grained level (cells)
then it also holds true on the coarse-grained level of discretization (components/blocks).

One specific elementary example for the asymmetry of bothT andbνµ is the irrational
rotation on a circle, which is an ergodic (but not mixing) dynamical system, defined by the
map

xn+1 = xn + r(mod 1) 0< r < 1 (51)

† Such a hypothesis is justified if the dynamical system is an ergodic system, and technically, in the framework of
the fine-grained and the coarse-grained block/component system, the corresponding Markov model satisfies such a
condition if all cells communicate, i.e. a transition from any cell to any other cell is possible (Durrett 1996). Such a
Markov process (chain) is called irreducible (Feller 1968).
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wherer is the irrational number, implying the ergodicity of the map on [0, 1). Let us assume
that this interval is divided intoM equal intervals (cells) andr < 1/M, and let us describe it
by our Markov model. Then it is obvious that only the following elements ofbνµ are non-zero:
bn,n andbn,n+1, for all n = 1, 2, . . . ,M wheren = M + 1 = 1. The matrixbνµ is thus
obviously manifestly asymmetric, and so isT, because the invariant measure of all cells is the
same and equal toq = 1/M.

However, it is still our opinion that it is an interesting open problem to precisely
characterize the interesting class of dynamical systems, in which we can and should expect
the symmetry ofbµν , based on physical arguments (some version of detailed balance
considerations).

The symmetry ofbνµ is not a necessary but certainly sufficient condition for the property
of T ‘rows-add-to-unity’ which also implies the property ofbνµNµ ‘columns-add-to-unity’,
the latter being a necessary condition for the existence of a unique equilibrium state, see
equations (48) and (50).

In principle, having the evolution equation (47), we can calculate everything. First, we
must diagonalize the matrixT. SinceT in general is a real but not symmetric matrix (even
if bνµ is symmetric!), the diagonalization cannot be done generally (only a reduction to the
Jordan canonical form is possible), but if it exists, then it is achieved by a similarity matrix
U and the eigenvaluesλµ, µ = 1, 2, . . . ,M are, in general, complex. However, since the
stationary equilibrium state (49) is an eigenvector ofT with eigenvalue unity, at least one
eigenvalue, denoted byλ1, must be unityλ1 = 1. Also, since the existence of the equilibrium
implies not only its uniqueness but also its approach to it starting from any initial statep̃0

µ,
all other eigenvalues must have an absolute value less than unity. After calculatingU and
λµ, µ = 2, 3, . . . ,M, and assuming without loss of generality that we start in component
µ = 1, such thatp̃0

µ = 1 for µ = 1 andp̃0
µ = 0 for µ > 2, we can completely describe the

evolution (47). Then let us denote byM the diagonal matrix ofT with diagonal elementsλµ,
related toT by

T = U−1MU. (52)

The solutionp̃jµ, denoted compactly bypj (which must always be real) of the evolution
equation with the above mentioned initial state (p̃0

µ = 1 for µ = 1 and 0 otherwise, denoted
compactly asp0) can be written as

pj = U−1MjUp0 (53)

or by writing in components

p̃jµ = p̃∞µ +
M∑
ν=2

αµνλ
j
ν

= Nµ

N
+

M∑
ν=2

αµνλ
j
ν (54)

where the quantitiesαµν and the eigenvaluesλµ are in general complex, and fully determined
by the knowledge of the matrixT, through the diagonalization procedure (52). The solution
obviously converges to the asymptotic equilibrium state (49), since|λµ| < 1 for allµ > 2. Of
course, the initial condition must be satisfied, and therefore the quantitiesαµν must obey the
following equations

M∑
µ=2

α1µ = 1− N1

N

M∑
µ=2

ανµ = −Nν
N

ν = 2, 3, . . . ,M. (55)
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The procedure is now, in analogy with the two-component model, to define the probabilities
Pj (l1, l2, . . . , lM) of having exactlyl1, l2, . . . , lM occupied cells in theµ = 1, 2, . . . ,M
component. Also, we define the probabilityPj (k) of having exactlyk occupied cells in
the entire system (all components). Of course

Pj (k) =
∑

l1+l2+···+lM=k
Pj (l1, l2, . . . , lM). (56)

What we seek (mainly) is the total occupied measure of all components together, denoted by
ρj , and equal to

ρj =
N∑
k=1

k

N
Pj (k) =

∑
l1,l2,...,lM

l1 + l2 + · · · + lM
N

Pj (l1, l2, . . . , lM). (57)

It can be split into partial contributions

ρ
µ

j =
∑

l1,l2,...,lM

łµ
N
Pj (l1, l2, . . . , lM) µ = 1, 2, . . . ,M (58)

so that, according to (57),

ρj =
M∑
µ=1

ρ
µ

j . (59)

The next step is, in analogy with (23), to write down the evolution (recursion) equation for
Pj (l1, l2, . . . , lM) and then by the trick of multiplication and summation to arrive at a one-
step recursion relation for each partial measure (58), which can be hopefully solved in a
similar way as the two-component model. By summing the partial contributions, equation
(59), we get the final expression forρj . This can by no means be written down in a closed
form because the diagonalization (52) cannot be done analytically and thus the quantitiesαµν
and the eigenvaluesλµ of the transition probability matrixT cannot be expressed in a closed
form. Any possible further developments in this direction, especially seeking some powerful
analytical approximations, is left for our future project.

5. Discussion and conclusions

In this work we have generalized ourrandom modelof diffusion in strongly chaotic ergodic
systems to ergodic systems consisting of several weakly communicating (coupled) ergodic
components, which is (a coarse grained picture of) a Markov model with aN × N transition
matrix having the block structure. Thus the system as a whole is supposed to be ergodic,
however, the time of diffusion inside each component is much smaller than the typical transition
time to jump from one to another component. A simple but powerful example is a billiard
system consisting of several ergodic components, interconnected by small holes or channels.
The ergodic dynamical system under consideration is analysed in the phase space, moreover,
on the surface of section, and we study the properties of the Poincaré mapping on the surface of
section, which we discretize into a grid system ofN cells of equal (relative) invariant measure
q = 1/N .

We have completely analysed the two-component model, giving the explicit analytical
results, and tested it in the case of the symmetric butterfly billiard (two cardioid billiards
(Robnik 1983) connected by a small hole). The results are very good.

In the general multi-component model the occupancy probability for each component
naturally leads to the Markovian model and its coarse grained structure. The results cannot be
written in an analytical closed form, because the diagonalizations of the transition probability
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matrix cannot be explicitly performed. The development of suitable analytical approximations
is one of our future projects. Also, we perhaps need a deeper understanding of how the physics
determines the transition matrixT and its properties. This matrix is generally not symmetric,
and neither is the matrixbµν (see section 4).

Finally, we should comment on the physical interpretations and applications of our
formalism. The multi-component ergodic system has been already mentioned, for example
weakly connected ergodic billiards. But we can also equally well study a coupling between
an integrable† and an ergodic system, and furthermore, anything in between, such as KAM
systems. If a given generic system of KAM type has strongly pronounced cantori, or regions
bounded by cantori, then we can again use our multi-component model to describe the statistical
features of classical dynamics. This leads us to refine our understanding of the transport and
statistical problems in Hamiltonian dynamical systems (MacKayet al 1984), especially in the
perspective of the extended study by Gaspard and Wang (1993). To look more carefully into
such systems, also in higher degrees of freedom, and especially in smooth dynamical systems,
such as a hydrogen atom in a strong magnetic field (Robnik 1981, 1982, Hasegawaet al1989)
and the H́enon–Heiles system (H́enon and Heiles 1964) is one of our future goals (Robnik and
Rapisarda 1998).
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Robnik M and Rapisarda A in progress
Sinai Ya G 1976Introduction to Ergodic Theory(Princeton: Princeton University Press) p 140
Strelcyn J-M 1991Colloq. Math.62331–45


